
Package: quadVAR (via r-universe)
November 20, 2024

Title Quadratic Vector Autoregression

Version 0.1.1

Description Estimate quadratic vector autoregression models with the
strong hierarchy using the RAMP algorithm, compare the
performance with linear models, and construct networks with
partial derivatives.

License GPL (>= 3)

URL https://github.com/Sciurus365/quadVAR,

https://sciurus365.github.io/quadVAR/

BugReports https://github.com/Sciurus365/quadVAR/issues

Imports cli, dplyr, ggplot2, magrittr, ncvreg, qgraph, RAMP, rlang,
shiny, shinythemes, stats, stringr, tibble, tidyr

Suggests nonlinearTseries, SIS, testthat (>= 3.0.0)

Remotes Sciurus365/RAMP

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.0

Config/pak/sysreqs libglpk-dev make libicu-dev libjpeg-dev libpng-dev
libxml2-dev zlib1g-dev

Repository https://sciurus365.r-universe.dev

RemoteUrl https://github.com/Sciurus365/quadVAR

RemoteRef HEAD

RemoteSha c0ac7d4ff4e4cef0112a33f607a045bd0d514cc7

1

https://github.com/Sciurus365/quadVAR
https://sciurus365.github.io/quadVAR/
https://github.com/Sciurus365/quadVAR/issues

2 block_cv

Contents
block_cv . 2
compare_4_emo . 3
find_index . 4
get_adj_mat . 4
linear_quadVAR_network . 5
partial_plot . 6
predict.quadVAR . 7
quadVAR . 8
quadVAR_to_dyn_eqns . 11
sim_4_emo . 12
true_model_4_emo . 13
tune.fit . 14

Index 17

block_cv Use Block Cross-Validation to Evaluate Models

Description

This function uses block cross-validation to evaluate a model. The data is split into blocks,
and the model is fit on all but one block and evaluated on the remaining block. This process
is repeated for each block, and the mean squared error is calculated for each model.

Usage

block_cv(
data,
dayvar = NULL,
model,
block = 10,
lowerbound = -Inf,
upperbound = Inf,
detail = FALSE,
metric = "MSE"

)

Arguments

data A data frame.
dayvar A character string. The name of the variable that represents the day.

This is required because this function use dayvar to specify the time point
before the test block should not be used to predict the time point after
the test block. If dayvar is not specified, in the original dataset, then
please add one constant variable as dayvar, and specify it both here and
in the function passed to model.

compare_4_emo 3

model A function. The model to be evaluated. The function should take a data
frame as its first argument and return a quadVAR object. It can be, for
example, function(x) quadVAR(x, vars = c("var1", "var2"))

block An integer. The number of blocks to use in the cross-validation. The
default is 10.

lowerbound A numeric value or a vector with the same length as the number of vari-
ables that specifies the lower bound of the predicted values. If the pre-
dicted value is less than this value, it will be replaced by this value. The
default value is -Inf.

upperbound A numeric value or a vector with the same length as the number of vari-
ables that specifies the upper bound of the predicted values. If the pre-
dicted value is greater than this value, it will be replaced by this value.
The default value is Inf.

detail A logical. If TRUE, the function will return the predictions for each model.
The default is FALSE, which only returns the mean squared error for each
model.

metric A character vector. The metric to be used to evaluate the model. The
default is ”MSE”, which calculates the mean squared error. The other
option is ”MAE”, which calculates the mean absolute error. Only effective
when detail = FALSE.

Value

Depending on detail. If FALSE, it returns a list of mean squared errors for each model. If
TRUE, it returns a list with the mean squared errors for each model, the true data, and the
predictions for each model.

compare_4_emo Compare estimated model with true model for 4-emotion model

Description

This function compares the estimated model with the true model for the 4-emotion model.
It prints out the estimated coefficients and the true coefficients for the main effects and
interaction effects.

Usage

compare_4_emo(model, silent = FALSE)

Arguments

model The estimated model, using data simulated from sim_4_emo(), and model
estimated using quadVAR().

silent Whether to print out the results.

4 get_adj_mat

Value

Silently return data frame with the estimated coefficients and the true coefficients for the
main effects and interaction effects, while printing out the results rounded to two digits if
silent = FALSE.

find_index Find index of data that satisfies certain conditions

Description

Find index of data that satisfies certain conditions

Usage

find_index(data, dayvar, beepvar)

Arguments

data A data frame.
dayvar String indicating assessment day. Adding this argument makes sure that

the first measurement of a day is not regressed on the last measurement
of the previous day. IMPORTANT: only add this if the data has multiple
observations per day.

beepvar Optional string indicating assessment beep per day. Adding this argument
will cause non-consecutive beeps to be treated as missing!

Value

A list of two vectors of indices.

get_adj_mat Extract the adjacency matrix from a quadVAR object.

Description

Extract the adjacency matrix from a quadVAR object.

Usage

get_adj_mat(model, value)

Arguments

model A quadVAR object.
value The actual_value in the output of linear_quadVAR_network().

linear_quadVAR_network 5

Value

An adjacency matrix.

linear_quadVAR_network
Linearize a quadVAR object to produce a network.

Description

A quadVAR object is nonlinear, which means that the relationship between variables are
not the same across different values of the variables. This function linearizes a quadVAR
object by specifying the values of the variables that the linearized model will be based on,
to facilitate interpretation. The linearized model is then expressed in an adjacency matrix,
which can be used to produce a network.

Usage

linear_quadVAR_network(model, value = NULL, value_standardized = TRUE)

S3 method for class 'linear_quadVAR_network'
plot(x, interactive = FALSE, ...)

Arguments

model A quadVAR object.
value A numeric vector of length 1 or the same as the number of nodes, that

specifies the values of the variables that the linearized model will be based
on. If the length is 1, the same value will be used for all variables. The
default value is NULL, in which case the value will be set to 0 in calculation,
which means (if value_standardized = TRUE) the linearized model will
be based on the mean values of all variables.

value_standardized
A logical value that specifies whether the input value is standardized or
not. If TRUE, the input value will be regarded as standardized value, i.e.,
mean + value * sd (e.g., 0 is the mean, 1 is mean + sd, ...). If FALSE,
the input value will regarded as in the raw scale of the input data. If the
raw dataset was already standardized, this parameter does not have an
effect. The default value is TRUE.

x A linear_quadVAR_network object.
interactive Whether to produce an interactive plot using shiny (in which the user

can change the values of variables interactively) or a static plot using
qgraph::qgraph(). Default is FALSE.

... Other arguments passed to qgraph::qgraph().

6 partial_plot

Value

A linear_quadVAR_network with the following elements:

• adj_mat: the adjacency matrix of the linearized network.
• standardized_value: the standardized value that the linearized model is based on.
• actual_value: the value in the raw scale of the input data.
• model: the input quadVAR object.
• value_standardized: the same as the input.

Methods (by generic)

• plot(linear_quadVAR_network): Produce a plot for the linearized quadVAR model.
If interactive = FALSE, the output will be a qgraph object, which can be further used
to calculate centrality measures using, e.g., qgraph::centrality() and qgraph::centralityPlot().

References

The idea of this linearization function is inspired by Kroc, E., & Olvera Astivia, O. L. (2023).
The case for the curve: Parametric regression with second- and third-order polynomial func-
tions of predictors should be routine. Psychological Methods. https://doi.org/10.1037/met0000629

partial_plot Make a partial plot of a variable in a model This function takes a
quadVAR model as input, and returns a plot of the partial effect
of a variable on the dependent variable (controlling all other
variables and the intercept), for higher and lower levels of the
moderator variable split by the median.

Description

Make a partial plot of a variable in a model This function takes a quadVAR model as input,
and returns a plot of the partial effect of a variable on the dependent variable (controlling
all other variables and the intercept), for higher and lower levels of the moderator variable
split by the median.

Usage

partial_plot(model, y, x, moderator)

Arguments

model A quadVAR model
y The dependent variable
x The variable for which the partial effect is plotted
moderator The moderator variable

predict.quadVAR 7

Value

A ggplot object

predict.quadVAR Predict the values of the dependent variables using the quadVAR
model

Description

Predict the values of the dependent variables using the quadVAR model

Usage

S3 method for class 'quadVAR'
predict(

object,
newdata = NULL,
donotpredict = NULL,
lowerbound = -Inf,
upperbound = Inf,
with_const = FALSE,
...

)

Arguments

object A quadVAR object.
newdata A data frame or tibble containing at least the values of the independent

variables, dayvar, and beepvar (if used in model estimation). If NULL,
the original data used to fit the model will be used.

donotpredict NOT IMPLEMENTED YET! A character vector of the model names
that are not used for prediction. Possible options include ”AR”, ”VAR”,
”VAR_full”, ”quadVAR_full”, ”all_others”, with NULL as the default.
If set ”all_others”, then only a quadVAR model will be estimated. For
datasets with large number of variables, you may set this parameter to
”quadVAR_full” to save time.

lowerbound A numeric value or a vector with the same length as the number of vari-
ables that specifies the lower bound of the predicted values. If the pre-
dicted value is less than this value, it will be replaced by this value. The
default value is -Inf.

upperbound A numeric value or a vector with the same length as the number of vari-
ables that specifies the upper bound of the predicted values. If the pre-
dicted value is greater than this value, it will be replaced by this value.
The default value is Inf.

8 quadVAR

with_const A logical value indicating whether to include the constant variables in
the prediction. Those variables were automatically excluded in the esti-
mation procedure. The default value is FALSE. When set to TRUE, the
lowerbound and upperbound should be a vector with the same length as
the number of variables in the model, including the constant variables.
The values of the constant variables will be ignored though because their
predicted values are always the same, which is the constant value in the
input data.

... Other arguments passed to the RAMP::predict.RAMP() function.

Value

A data frame or tibble containing the predicted values of the dependent variables. If a
value cannot be predicted (e.g., because the corresponding previous time point is not in the
data), it will be NA.

quadVAR Estimate lag-1 quadratic vector autoregression models

Description

This function estimate regularized nonlinear quadratic vector autoregression models with
strong hierarchy using the RAMP::RAMP() algorithm, and also compare it with the linear
AR, regularized VAR, and unregularized (full) VAR and quadratic VAR models.

Usage

quadVAR(
data,
vars,
dayvar = NULL,
beepvar = NULL,
penalty = "LASSO",
tune = "EBIC",
donotestimate = NULL,
SIS_options = list(),
RAMP_options = list()

)

S3 method for class 'quadVAR'
print(x, ...)

S3 method for class 'quadVAR'
summary(object, ...)

S3 method for class 'quadVAR'
coef(object, ...)

quadVAR 9

S3 method for class 'coef_quadVAR'
print(

x,
use_actual_names = TRUE,
abbr = FALSE,
minlength = 3,
omit_zero = TRUE,
digits = 2,
row.names = FALSE,
...

)

S3 method for class 'quadVAR'
plot(x, value = NULL, value_standardized = TRUE, interactive = FALSE, ...)

Arguments

data A tibble, data.frame, or matrix that represents a time series of vectors,
with each row as a time step.

vars A character vector of the variable names used in the model.
dayvar String indicating assessment day. Adding this argument makes sure that

the first measurement of a day is not regressed on the last measurement
of the previous day. IMPORTANT: only add this if the data has multiple
observations per day.

beepvar Optional string indicating assessment beep per day. Adding this argument
will cause non-consecutive beeps to be treated as missing!

penalty The penalty used for the linear and regularized VAR models. Possible op-
tions include ”LASSO”, ”SCAD”, ”MCP”, with ”LASSO” as the default.

tune Tuning parameter selection method. Possible options include ”AIC”,
”BIC”, ”EBIC”, with ”EBIC” as the default.

donotestimate A character vector of the model names that are not estimated. Possi-
ble options include, ”NULL_model”, ”AR”, ”VAR”, ”VAR_full”, ”quad-
VAR_full”, ”all_others”, with NULL as the default. If set ”all_others”,
then only a quadVAR model will be estimated. For datasets with large
number of variables, you may set this parameter to ”quadVAR_full” to
save time.

SIS_options A list of other parameters for the SIS::tune.fit() function. This is
used for the regularized VAR models.

RAMP_options A list of other parameters for the RAMP::RAMP() function. This is used
for the nonlinear quadratic VAR model.

... For print.quadVAR, additional arguments passed to print.coef_quadVAR().
For print.coef_quadVAR, additional arguments passed to print.data.frame().

object, x An quadVAR object. (For print.coef_quadVAR, an coef_quadVAR object
returned by coef.quadVAR().)

10 quadVAR

use_actual_names
Logical. If TRUE, the actual variable names are used in the output. If
FALSE, the names ”X1”, ”X2”, etc., are used in the output. Default is
TRUE.

abbr Logical. If TRUE, the output is abbreviated. Default is FALSE.

minlength the minimum length of the abbreviations.

omit_zero Logical. If TRUE, the coefficients that are zero are omitted. Default is
FALSE.

digits the minimum number of significant digits to be used: see print.default.

row.names logical (or character vector), indicating whether (or what) row names
should be printed.

value A numeric vector of length 1 or the same as the number of nodes, that
specifies the values of the variables that the linearized model will be based
on. If the length is 1, the same value will be used for all variables. The
default value is NULL, in which case the value will be set to 0 in calculation,
which means (if value_standardized = TRUE) the linearized model will
be based on the mean values of all variables.

value_standardized
A logical value that specifies whether the input value is standardized or
not. If TRUE, the input value will be regarded as standardized value, i.e.,
mean + value * sd (e.g., 0 is the mean, 1 is mean + sd, ...). If FALSE,
the input value will regarded as in the raw scale of the input data. If the
raw dataset was already standardized, this parameter does not have an
effect. The default value is TRUE.

interactive Whether to produce an interactive plot using shiny (in which the user
can change the values of variables interactively) or a static plot using
qgraph::qgraph(). Default is FALSE.

Value

An quadVAR object that contains the following elements:

• NULL_model: A list of NULL models for each variable.

• AR_model: A list of linear AR models for each variable.

• VAR_model: A list of regularized VAR models for each variable.

• VAR_full_model: A list of unregularized (full) VAR models for each variable.

• quadVAR_model: A list of regularized nonlinear quadratic VAR models for each vari-
able.

• quadVAR_full_model: A list of unregularized (full) nonlinear quadratic VAR models
for each variable.

• data,vars,penalty,tune,SIS_options,RAMP_options: The input arguments.

• data_x,data_y: The data directly used for modeling.

quadVAR_to_dyn_eqns 11

Methods (by generic)

• print(quadVAR): Print the coefficients for a quadVAR object. See coef.quadVAR()
and print.coef_quadVAR() for details.

• summary(quadVAR): Summary of a quadVAR object. Different IC definitions used by
different packages (which differ by a constant) are unified to make them comparable
to each other.

• coef(quadVAR): Extract the coefficients from a quadVAR object.
• plot(quadVAR): Produce a plot for the linearized quadVAR model. Equivalent to

first produce a linear quadVAR network using linear_quadVAR_network(), then use
plot.linear_quadVAR_network().

Functions

• print(coef_quadVAR): Print the coefficients from a quadVAR object.

See Also

linear_quadVAR_network()

Examples

set.seed(1614)
data <- sim_4_emo(time = 200, sd = 1)
plot(data[, "x1"])
qV1 <- quadVAR(data, vars = c("x1", "x2", "x3", "x4"))
summary(qV1)
coef(qV1)
plot(qV1)
Compare the estimation with the true model
plot(true_model_4_emo())
plot(qV1, value = 0, value_standardized = FALSE, layout = plot(true_model_4_emo())$layout)

quadVAR_to_dyn_eqns Transform a quadVAR object to a list of dynamic equations.

Description

Transform a quadVAR object to a list of dynamic equations.

Usage

quadVAR_to_dyn_eqns(model, minus_self = TRUE)

12 sim_4_emo

Arguments

model A quadVAR object.
minus_self Whether to subtract the term itself from the equation. If TRUE, the equa-

tion will be in the form of (0 =) ... - X1; if FALSE, the equation will be
in the form of (X1 =)....

Value

A list of dynamic equations in characters. You can also use rlang::parse_expr() to parse
them into expressions.

sim_4_emo Simulate a 4-emotion model

Description

This function simulates a 4-emotion model which is nonlinear, bistable, discrete, and (al-
most) centered to zero. Adapted from the model described by van de Leemput et al. (2014).

Usage

sim_4_emo(time = 200, init = c(1.36, 1.36, 4.89, 4.89), sd = 1)

Arguments

time The number of time steps to simulate.
init A vector of initial values for the four variables. Default is c(1.36, 1.36,

4.89, 4.89), which is one of the stable states of the model.
sd The standard deviation of the noise.

Value

A matrix with the simulated data.

References

van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens,
P., ... & Scheffer, M. (2014). Critical slowing down as early warning for the onset and
termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87-92.

See Also

true_model_4_emo(), compare_4_emo(), quadVAR()

true_model_4_emo 13

true_model_4_emo True model for 4-emotion model

Description

This function generate the true model for the 4-emotion model. It can used to compare the
estimated model with the true model, or to plot the true model.

Usage

true_model_4_emo(...)

S3 method for class 'true_model_4_emo'
coef(object, ...)

S3 method for class 'true_model_4_emo'
print(x, which = NULL, ...)

Arguments

... Not in use.
object A true_model_4_emo object.
x A true_model_4_emo object.
which Which model to print out. There are four models in total, corresponding

to the four variables.

Value

A true_model_4_emo object.
NULL, but prints out the true model.

Methods (by generic)

• coef(true_model_4_emo): This function returns the coefficients for the 4-emotion
model. It is also used in other functions to generate the linearized version of the true
model and to make plots. It returns a list of coefficients for the 4-emotion model, in
the same format as coef.quadVAR()

• print(true_model_4_emo): This function prints out the true model for the 4-emotion
model in the same format as RAMP::RAMP(), to help users to compare the true model
and the estimated model.

See Also

true_model_4_emo(), compare_4_emo(), quadVAR()

14 tune.fit

Examples

coef(true_model_4_emo())
plot(true_model_4_emo())
Not run:
plot(true_model_4_emo(), interactive = TRUE)

End(Not run)

tune.fit Using the glmnet and ncvreg packages, fits a Generalized Linear
Model or Cox Proportional Hazards Model using various methods
for choosing the regularization parameter �

Description

This function is modified from SIS::tune.fit(). It is used to tune the regularization
parameter for the regularized VAR models. This wrapper is used because of the following
reasons.

1. The original SIS::tune.fit() function does not return the value of the information
criteria that we would like to use.

2. We use the ncvreg package exclusively (so we removed the code using the glmnet
package). This is to make the result more consistent, and also because the ncvreg
package has better support for the calculation of information criteria.

3. We also removed the generalized linear model (GLM) option, and the cross-validation
option because we do not use them.

4. We use stats::AIC() and stats::BIC() instead of the ones using SIS:::loglik() to make
the calculation methods more consistent.

5. We added ... to allow the user to pass additional arguments to the ncvreg::ncvreg()
function.

Usage

tune.fit(
x,
y,
family = "gaussian",
penalty = c("SCAD", "MCP", "lasso"),
concavity.parameter = switch(penalty, SCAD = 3.7, 3),
tune = c("aic", "bic", "ebic"),
type.measure = c("deviance", "class", "auc", "mse", "mae"),
gamma.ebic = 1,
...

)

tune.fit 15

Arguments

x The design matrix, of dimensions n * p, without an intercept. Each row
is an observation vector.

y The response vector of dimension n * 1. Quantitative for family='gaussian',
non-negative counts for family='poisson', binary (0-1) for family='binomial'.
For family='cox', y should be an object of class Surv, as provided by
the function Surv() in the package survival.

family Response type (see above).
penalty The penalty to be applied in the regularized likelihood subproblems.

’SCAD’ (the default), ’MCP’, or ’lasso’ are provided.
concavity.parameter

The tuning parameter used to adjust the concavity of the SCAD/MCP
penalty. Default is 3.7 for SCAD and 3 for MCP.

tune Method for selecting the regularization parameter along the solution path
of the penalized likelihood problem. Options to provide a final model
include tune='cv', tune='aic', tune='bic', and tune='ebic'. See
references at the end for details.

type.measure Loss to use for cross-validation. Currently five options, not all available
for all models. The default is type.measure='deviance', which uses
squared-error for gaussian models (also equivalent to type.measure='mse'
in this case), deviance for logistic and poisson regression, and partial-
likelihood for the Cox model. Both type.measure='class' and type.measure='auc'
apply only to logistic regression and give misclassification error and area
under the ROC curve, respectively. type.measure='mse' or type.measure='mae'
(mean absolute error) can be used by all models except the 'cox'; they
measure the deviation from the fitted mean to the response. For penalty='SCAD'
and penalty='MCP', only type.measure='deviance' is available.

gamma.ebic Specifies the parameter in the Extended BIC criterion penalizing the size
of the corresponding model space. The default is gamma.ebic=1. See
references at the end for details.

... additional arguments to be passed to the ncvreg::ncvreg() function.

Details

Original description from SIS::tune.fit():
This function fits a generalized linear model or a Cox proportional hazards model via
penalized maximum likelihood, with available penalties as indicated in the glmnet and
ncvreg packages. Instead of providing the whole regularization solution path, the function
returns the solution at a unique value of �, the one optimizing the criterion specified in tune.

Value

Returns an object with

ix The vector of indices of the nonzero coefficients selected by the maximum
penalized likelihood procedure with tune as the method for choosing the
regularization parameter.

16 tune.fit

a0 The intercept of the final model selected by tune.
beta The vector of coefficients of the final model selected by tune.
fit The fitted penalized regression object.
lambda The corresponding lambda in the final model.
lambda.ind The index on the solution path for the final model.

Author(s)

Jianqing Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, and Yichao Wu

References

Jerome Friedman and Trevor Hastie and Rob Tibshirani (2010) Regularization Paths for
Generalized Linear Models Via Coordinate Descent. Journal of Statistical Software, 33(1),
1-22.
Noah Simon and Jerome Friedman and Trevor Hastie and Rob Tibshirani (2011) Regular-
ization Paths for Cox’s Proportional Hazards Model Via Coordinate Descent. Journal of
Statistical Software, 39(5), 1-13.
Patrick Breheny and Jian Huang (2011) Coordiante Descent Algorithms for Nonconvex
Penalized Regression, with Applications to Biological Feature Selection. The Annals of
Applied Statistics, 5, 232-253.
Hirotogu Akaike (1973) Information Theory and an Extension of the Maximum Likelihood
Principle. In Proceedings of the 2nd International Symposium on Information Theory, BN
Petrov and F Csaki (eds.), 267-281.
Gideon Schwarz (1978) Estimating the Dimension of a Model. The Annals of Statistics, 6,
461-464.
Jiahua Chen and Zehua Chen (2008) Extended Bayesian Information Criteria for Model
Selection with Large Model Spaces. Biometrika, 95, 759-771.

Examples
Not run:
set.seed(0)
data("leukemia.train", package = "SIS")
y.train <- leukemia.train[, dim(leukemia.train)[2]]
x.train <- as.matrix(leukemia.train[, -dim(leukemia.train)[2]])
x.train <- standardize(x.train)
model <- tune.fit(x.train[, 1:3500], y.train, family = "binomial", tune = "bic")
model$ix
model$a0
model$beta

End(Not run)

Index

block_cv, 2

coef.quadVAR (quadVAR), 8
coef.quadVAR(), 9, 11, 13
coef.true_model_4_emo

(true_model_4_emo), 13
compare_4_emo, 3
compare_4_emo(), 12, 13

find_index, 4

get_adj_mat, 4

linear_quadVAR_network, 5
linear_quadVAR_network(), 4, 11

partial_plot, 6
plot.linear_quadVAR_network

(linear_quadVAR_network), 5
plot.linear_quadVAR_network(), 11
plot.quadVAR (quadVAR), 8
predict.quadVAR, 7
print.coef_quadVAR (quadVAR), 8
print.coef_quadVAR(), 9, 11
print.data.frame(), 9
print.default, 10
print.quadVAR (quadVAR), 8
print.true_model_4_emo

(true_model_4_emo), 13

qgraph::centrality(), 6
qgraph::centralityPlot(), 6
qgraph::qgraph(), 5, 10
quadVAR, 8
quadVAR(), 3, 12, 13
quadVAR_to_dyn_eqns, 11

RAMP::predict.RAMP(), 8
RAMP::RAMP(), 8, 9, 13
rlang::parse_expr(), 12

sim_4_emo, 12
sim_4_emo(), 3
SIS::tune.fit(), 9, 14, 15
summary.quadVAR (quadVAR), 8

true_model_4_emo, 13
true_model_4_emo(), 12, 13
tune.fit, 14

17

	block_cv
	compare_4_emo
	find_index
	get_adj_mat
	linear_quadVAR_network
	partial_plot
	predict.quadVAR
	quadVAR
	quadVAR_to_dyn_eqns
	sim_4_emo
	true_model_4_emo
	tune.fit
	Index

