
Package: simlandr (via r-universe)
October 24, 2024

Type Package

Title Simulation-Based Landscape Construction for Dynamical Systems

Version 0.3.1

Description A toolbox for constructing potential landscapes for
dynamical systems using Monte Carlo simulation. The method is
based on the potential landscape definition by Wang et al.
(2008) <doi:10.1073/pnas.0800579105> (also see Zhou & Li, 2016
<doi:10.1063/1.4943096> for further mathematical discussions)
and can be used for a large variety of models.

License GPL (>= 3)

URL https://sciurus365.github.io/simlandr/,

https://github.com/Sciurus365/simlandr

BugReports https://github.com/Sciurus365/simlandr/issues

Imports bigmemory, digest, dplyr, forcats, gganimate, ggplot2,
grDevices, htmlwidgets, ks, lifecycle, magrittr, MASS, methods,
plotly, progress, purrr, rlang, tibble

Suggests coda, knitr, rmarkdown, webshot

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.0

Repository https://sciurus365.r-universe.dev

RemoteUrl https://github.com/sciurus365/simlandr

RemoteRef HEAD

RemoteSha 7f902377fc80153e51fbba702b4dc24a5fc2f475

Contents
arg_set-class . 2
attach_all_matrices . 4
autolayer.barrier . 4

1

https://doi.org/10.1073/pnas.0800579105
https://doi.org/10.1063/1.4943096
https://sciurus365.github.io/simlandr/
https://github.com/Sciurus365/simlandr
https://github.com/Sciurus365/simlandr/issues

2 arg_set-class

batch_simulation . 5
calculate_barrier . 6
check_conv . 8
get_dist . 9
hash_big_matrix-class . 9
make_2d_matrix . 10
make_2d_static . 11
make_3d_animation . 12
make_3d_matrix . 14
make_3d_static . 15
make_4d_static . 16
make_barrier_grid_2d . 18
make_barrier_grid_3d . 19
plot.landscape . 19
save_landscape . 20
sim_fun_grad . 21
sim_fun_nongrad . 22
sim_fun_test . 23
summary.barrier . 24

Index 25

arg_set-class Create and modify argument sets, then make an argument grid for
batch simulation

Description

An argument set contains the descriptions of the relevant variables in a batch simulation. Use
new_arg_set() to create an arg_set object, and use add_arg_ele() to add an element to the
arg_set. After adding all elements in the argument set, use make_arg_grid() to make an argument
grid that can be used directly for running batch simulation.

Usage

new_arg_set()

add_arg_ele(arg_set, arg_name, ele_name, start, end, by)

nele(arg_set)

narg(arg_set)

S3 method for class 'arg_set'
print(x, detail = FALSE, ...)

make_arg_grid(arg_set)

arg_set-class 3

S3 method for class 'arg_grid'
print(x, detail = FALSE, ...)

Arguments

arg_set An arg_set object.

arg_name, ele_name
The name of the argument and its element in the simulation function

start, end, by The data points where you want to test the variables. Passed to seq.

x An arg_set object

detail Do you want to print the object details as a full list?

... Not in use.

Value

new_arg_set() returns an arg_set object.

add_arg_ele() returns an arg_set object.

nele() returns an integer.

narg() returns an integer.

make_arg_gird() returns an arg_grid object.

Functions

• new_arg_set(): Create an arg_set.

• add_arg_ele(): Add an element to an arg_set.

• nele(): The number of elements in an arg_set.

• narg(): The number of arguments in an arg_set.

• print(arg_set): Print an arg_set object.

• make_arg_grid(): Make an argument grid from an argument set.

• print(arg_grid): Print an arg_grid object

See Also

batch_simulation() for running batch simulation and a concrete example.

4 autolayer.barrier

attach_all_matrices Attach all matrices in a batch simulation

Description

Attach all matrices in a batch simulation

Usage

attach_all_matrices(bs, backingpath = "bp")

Arguments

bs A batch_simulation object.

backingpath Passed to bigmemory::as.big.matrix().

Value

A batch_simulation object with all hash_big_matrixes attached.

autolayer.barrier Get a ggplot2 layer from a barrier object

Description

This layer can show the saddle point (2d) and the minimal energy path (3d) on the landscape.

Usage

S3 method for class 'barrier'
autolayer(object, path = TRUE, ...)

Arguments

object A barrier object.

path Show the minimum energy path in the graph?

... Not in use.

Value

A ggplot2 layer that can be added to an existing landscape plot.

batch_simulation 5

batch_simulation Perform a batch simulation.

Description

Perform a batch simulation.

Usage

batch_simulation(arg_grid, sim_fun, default_list, bigmemory = TRUE, ...)

S3 method for class 'batch_simulation'
print(x, detail = FALSE, ...)

Arguments

arg_grid An arg_grid object. See make_arg_grid().

sim_fun The simulation function. See sim_fun_test() for an example.

default_list A list of default values for sim_fun.

bigmemory Use hash_big_matrix-class() to store large matrices?

... Other parameters passed to sim_fun

x An arg_set object

detail Do you want to print the object details as a full list?

Value

A batch_simulation object, also a data frame. The first column, var, is a list of ele_list that
contains all the variables; the second to the second last columns are the values of the variables; the
last column is the output of the simulation function.

Functions

• batch_simulation(): Perform a batch simulation.

Examples

batch_arg_set_grad <- new_arg_set()
batch_arg_set_grad <- batch_arg_set_grad %>%

add_arg_ele(
arg_name = "parameter", ele_name = "a",
start = -6, end = -1, by = 1

)
batch_grid_grad <- make_arg_grid(batch_arg_set_grad)
batch_output_grad <- batch_simulation(batch_grid_grad, sim_fun_grad,

default_list = list(
initial = list(x = 0, y = 0),
parameter = list(a = -4, b = 0, c = 0, sigmasq = 1)

6 calculate_barrier

),
length = 1e2,
seed = 1614,
bigmemory = FALSE

)
print(batch_output_grad)

calculate_barrier Functions for calculating energy barrier from landscapes

Description

Functions for calculating energy barrier from landscapes

Usage

calculate_barrier(l, ...)

S3 method for class '`2d_landscape`'
calculate_barrier(
l,
start_location_value,
start_r,
end_location_value,
end_r,
base = exp(1),
...

)

S3 method for class '`3d_landscape`'
calculate_barrier(
l,
start_location_value,
start_r,
end_location_value,
end_r,
Umax,
expand = TRUE,
omit_unstable = FALSE,
base = exp(1),
...

)

S3 method for class '`2d_landscape_batch`'
calculate_barrier(
l,
bg = NULL,

calculate_barrier 7

start_location_value,
start_r,
end_location_value,
end_r,
base = exp(1),
...

)

S3 method for class '`3d_landscape_batch`'
calculate_barrier(
l,
bg = NULL,
start_location_value,
start_r,
end_location_value,
end_r,
Umax,
expand = TRUE,
omit_unstable = FALSE,
base = exp(1),
...

)

Arguments

l A landscape object.

... Not in use.
start_location_value, end_location_value

The initial position (in value) for searching the start/end point.

start_r, end_r The search radius (in L1 distance) for the start/end point.

base The base of the log function.

Umax The highest possible value of the potential function.

expand If the values in the range all equal to Umax, expand the range or not?

omit_unstable If a state is not stable (the "local minimum" overlaps with the saddle point), omit
that state or not?

bg A 2d_barrier_grid or 3d_barrier_grid object if you want to use different
parameters for each condition. Otherwise NULL as default.

Value

A barrier object that contains the (batch) barrier calculation result(s).

8 check_conv

check_conv Graphical diagnoses to check if the simulation converges

Description

Compare the distribution of different stages of simulation (for plot_type == "bin" or plot_type
= "density"), or show how the percentiles of the distribution evolve over time (for plot_type ==
cumuplot, see coda::cumuplot() for details). More convergence checking methods for MCMC
data are available at the coda package. Be cautious: each convergence checking method has its
shortcomings, so do not blindly use any results as the definitive conclusion that a simulation con-
verges or not.

Usage

check_conv(output, vars, sample_perc = 0.2, plot_type = "bin")

S3 method for class 'check_conv'
print(x, ask = TRUE, ...)

Arguments

output A matrix of simulation output.

vars The names of variables to check.

sample_perc The percentage of data sample for the initial, middle, and final stage of the
simulation. Not required if plot_type == "cumuplot".

plot_type Which type of plots should be generated? ("bin", "density", or "cumuplot"
which uses coda::cumuplot())

x The object.

ask Ask to press enter to see the next plot?

... Not in use.

Value

A check_conv object that contains the convergence checking result(for plot_type == "bin" or
plot_type = "density"), or draw the cumuplot without a return value (for plot_type == cumuplot).

Methods (by generic)

• print(check_conv): Print a check_conv object.

get_dist 9

get_dist Get the probability distribution from a landscape object

Description

Get the probability distribution from a landscape object

Usage

get_dist(l, index = 1)

Arguments

l A landscape project.

index 1 to get the distribution in tidy format; 2 or "raw" to get the raw simulation result
(batch_simulation).

Value

A data.frame that contains the distribution in the tidy format or the raw simulation result.

hash_big_matrix-class Class "hash_big_matrix": big matrix with a md5 hash reference

Description

hash_big_matrix class is a modified class from bigmemory::big.matrix-class(). Its purpose
is to help users operate big matrices within hard disk in a reusable way, so that the large matrices do
not consume too much memory, and the matrices can be reused for the next time. Comparing with
bigmemory::big.matrix-class(), the major enhancement of hash_big_matrix class is that the
backing files are, by default, stored in a permanent place, with the md5 of the object as the file
name. With this explicit name, hash_big_matrix objects can be easily reloaded into workspace
every time.

Usage

as_hash_big_matrix(x, backingpath = "bp", silence = TRUE, ...)

attach_hash_big_matrix(x, backingpath = "bp")

Arguments

x A matrix, vector, or data.frame for bigmemory::as.big.matrix().
backingpath, ...

Passed to bigmemory::as.big.matrix().

silence Suppress messages?

10 make_2d_matrix

Functions

• as_hash_big_matrix(): Create a hash_big_matrix object from a matrix.

• attach_hash_big_matrix(): Attach a hash_big_matrix object from the backing file to the
workspace.

Slots

md5 The md5 value of the matrix.

address Inherited from big.matrix.

make_2d_matrix Make a matrix of 2D static landscape plots for one or two parameters

Description

Make a matrix of 2D static landscape plots for one or two parameters

Usage

make_2d_matrix(
bs,
x,
rows = NULL,
cols,
lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x The name of the target variable.

rows, cols The names of the parameters. rows can be left blank if only one parameter is
needed.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

make_2d_static 11

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.
individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

Value

A 2d_matrix_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_2d_static Make 2D static landscape plot for a single simulation output

Description

Make 2D static landscape plot for a single simulation output

Usage

make_2d_static(
output,
x,
lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5

)

make_2d_single(
output,
x,

12 make_3d_animation

lims,
kde_fun = c("ks", "base"),
n = 200,
h,
adjust = 1,
Umax = 5

)

Arguments

output A matrix of simulation output.

x The name of the target variable.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

Value

A 2d_static_landscape object that describes the landscape of the system, including the smooth
distribution and the landscape plot.

make_3d_animation Make 3d animations from multiple simulations

Description

Make 3d animations from multiple simulations

make_3d_animation 13

Usage

make_3d_animation(
bs,
x,
y,
fr,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE,
mat_3d = FALSE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x, y The names of the target variables.

fr The names of the parameters used to represent frames in the animation.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.
individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

mat_3d Also make the matrix by make_3d_matrix()? If so, the matrix can be drawn
with plot(<landscape>, 3).

14 make_3d_matrix

Value

A 3d_animation_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_3d_matrix Make a matrix of 3D static landscape plots for one or two parameters

Description

Currently only 3D (x, y, color) is supported. Matrices with 3D (x, y, z) plots are not supported.

Usage

make_3d_matrix(
bs,
x,
y,
rows = NULL,
cols,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5,
individual_landscape = TRUE

)

Arguments

bs A batch_simulation object created by [batch_simulation()].

x, y The names of the target variables.

rows, cols The names of the parameters. rows can be left blank if only one parameter is
needed.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

make_3d_static 15

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.
individual_landscape

Make individual landscape for each simulation? Default is TRUE so that it is
possible to calculate barriers. Set to FALSE to save time.

Value

A 3d_matrix_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_3d_static Make 3D static landscape plots from simulation output

Description

Make 3D static landscape plots from simulation output

Usage

make_3d_static(
output,
x,
y,
lims,
kde_fun = c("ks", "MASS"),
n = 200,
h,
adjust = 1,
Umax = 5

)

make_3d_single(
output,
x,
y,
lims,
kde_fun = c("ks", "MASS"),
n = 200,

16 make_4d_static

h,
adjust = 1,
Umax = 5

)

Arguments

output A matrix of simulation output.

x, y The names of the target variables.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes
based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

Value

A 3d_static_landscape object that describes the landscape of the system, including the smooth
distribution and the landscape plot.

make_4d_static Make 4D static space-color plots from simulation output

Description

Make 4D static space-color plots from simulation output

make_4d_static 17

Usage

make_4d_static(
output,
x,
y,
z,
lims,
kde_fun = "ks",
n = 50,
h,
adjust = 1,
Umax = 5

)

make_4d_single(
output,
x,
y,
z,
lims,
kde_fun = "ks",
n = 50,
h,
adjust = 1,
Umax = 5

)

Arguments

output A matrix of simulation output.

x, y, z The names of the target variables.

lims The limits of the range for the density estimator as c(xl, xu) for 2D land-
scapes, c(xl, xu, yl, yu) for 3D landscapes, c(xl, xu, yl, yu, zl, zu) for
4D landscapes. If missing, the range of the data extended by 10% for both sides
will be used. For landscapes based on multiple simulations, the largest range of
all simulations (which means the lowest lower limit and the highest upper limit)
will be used by default.

kde_fun Which kernel estimator to use? Choices: "ks" ks::kde() (default; faster and us-
ing less memory); "base" base::density() (only for 2D landscapes); "MASS"
MASS::kde2d() (only for 3D landscapes).

n The number of equally spaced points in each axis, at which the density is to be
estimated.

h A number, or possibly a vector for 3D and 4D landscapes, specifying the smooth-
ing bandwidth to be used. If missing, the default value of the kernel estimator
will be used (but bw = "SJ" for base::density()). Note that the definition of
bandwidth might be different for different kernel estimators. For landscapes

18 make_barrier_grid_2d

based on multiple simulations, the largest h of all simulations will be used by
default.

adjust The multiplier to the bandwidth. The bandwidth used is actually adjust * h.
This makes it easy to specify values like "half the default" bandwidth.

Umax The maximum displayed value of potential.

Value

A 4d_static_landscape object that describes the landscape of the system, including the smoothed
distribution and the landscape plot.

make_barrier_grid_2d Make a grid for calculating barriers for 2d landscapes

Description

Make a grid for calculating barriers for 2d landscapes

Usage

make_barrier_grid_2d(
ag,
start_location_value,
start_r,
end_location_value,
end_r,
df = NULL,
print_template = FALSE

)

Arguments

ag An arg_grid object.
start_location_value, start_r, end_location_value, end_r

Default values for finding local minimum. See calculate_barrier().

df A data frame for the variables. Use print_template = TRUE to get a template.

print_template Print a template for df.

Value

A barrier_grid_2d object that specifies the condition for each barrier calculation.

make_barrier_grid_3d 19

make_barrier_grid_3d Make a grid for calculating barriers for 3d landscapes

Description

Make a grid for calculating barriers for 3d landscapes

Usage

make_barrier_grid_3d(
ag,
start_location_value,
start_r,
end_location_value,
end_r,
df = NULL,
print_template = FALSE

)

Arguments

ag An arg_grid object.
start_location_value, start_r, end_location_value, end_r

Default values for finding local minimum. See calculate_barrier().

df A data frame for the variables. Use print_template = TRUE to get a template.

print_template Print a template for df.

Value

A barrier_grid_3d object that specifies the condition for each barrier calculation.

plot.landscape Make plots from landscape objects

Description

Make plots from landscape objects

Usage

S3 method for class 'landscape'
plot(x, index = 1, ...)

20 save_landscape

Arguments

x A landscape object

index Default is 1. For some landscape objects, there is a second plot (usually 2d
heatmaps for 3d landscapes) or a third plot (usually 3d matrices for 3d anima-
tions). Use index = 2 to plot that one.

... Not in use.

Value

The plot.

save_landscape Save landscape plots

Description

Save landscape plots

Usage

save_landscape(l, path = NULL, selfcontained = FALSE, ...)

Arguments

l A landscape object

path The path to save the output. Default: "/pics/x_y.html".

selfcontained For ’plotly’ plots, save the output as a self-contained html file? Default: FALSE.

... Other parameters passed to htmlwidgets::saveWidget() or ggplot2::ggsave()

Value

The function saves the plot to a specific path. It does not have a return value.

sim_fun_grad 21

sim_fun_grad A simple gradient simulation function for testing

Description

This is a toy stochastic gradient system which can have bistability in some conditions. Model
specification:

U = x4 + y4 + axy + bx+ cy

dx/dt = −∂U/∂x+ σdW/dt = −4x3 − ay − b+ σdW/dt

dy/dt = −∂U/∂y + σdW/dt = −4y3 − ax− c+ σdW/dt

Usage

sim_fun_grad(
initial = list(x = 0, y = 0),
parameter = list(a = -4, b = 0, c = 0, sigmasq = 1),
length = 1e+05,
stepsize = 0.01,
seed = NULL

)

Arguments

initial, parameter
Two sets of parameters. initial contains the initial value of x and y; parameter
contains a,b,c, which control the shape of the potential landscape, and sigmasq,
which is the square of σ and controls the amplitude of noise.

length The length of simulation.

stepsize The step size used in the Euler method.

seed The initial seed that will be passed to set.seed() function.

Value

A matrix of simulation results.

See Also

sim_fun_nongrad() and batch_simulation().

22 sim_fun_nongrad

sim_fun_nongrad A simple non-gradient simulation function for testing

Description

This is a toy stochastic non-gradient system which can have multistability in some conditions.
Model specification:

Usage

sim_fun_nongrad(
initial = list(x1 = 0, x2 = 0, a = 1),
parameter = list(b = 1, k = 1, S = 0.5, n = 4, lambda = 0.01, sigmasq1 = 8, sigmasq2 =

8, sigmasq3 = 2),
constrain_a = TRUE,
amin = -0.3,
amax = 1.8,
length = 1e+05,
stepsize = 0.01,
seed = NULL,
progress = TRUE

)

Arguments

initial, parameter
Two sets of parameters. initial contains the initial value of x1, x2, and a;
parameter contains b,k,S,n,lambda, which control the model dynamics, and
sigmasq1,sigmasq2,sigmasq3, which are the squares of σ1, σ2, σ3 and con-
trols the amplitude of noise.

constrain_a Should the value of a be constrained? (TRUE by default).

amin, amax If constrain_a, the minimum and maximum values of a.

length The length of simulation.

stepsize The step size used in the Euler method.

seed The initial seed that will be passed to set.seed() function.

progress Show progress bar of the simulation?

Details

dx1

dt
=

axn
1

Sn + xn
1

+
bSn

Sn + xn
2

− kx1 + σ1dW1/dt

dx2

dt
=

axn
2

Sn + xn
2

+
bSn

Sn + xn
1

− kx2 + σ2dW2/dt

da

dt
= −λa+ σ3dW3/dt

sim_fun_test 23

Value

A matrix of simulation results.

References

Wang, J., Zhang, K., Xu, L., & Wang, E. (2011). Quantifying the Waddington landscape and
biological paths for development and differentiation. Proceedings of the National Academy of
Sciences, 108(20), 8257-8262. doi:10.1073/pnas.1017017108

See Also

sim_fun_grad() and batch_simulation().

sim_fun_test A simple simulation function for testing

Description

A simple simulation function for testing

Usage

sim_fun_test(par1, par2, length = 1000)

Arguments

par1, par2 Two parameters. par1 contains var1; par2 contains var2 and var3.

length The length of simulation.

Value

A matrix of simulation results.

See Also

sim_fun_grad() and sim_fun_nongrad() for more realistic examples.

https://doi.org/10.1073/pnas.1017017108

24 summary.barrier

summary.barrier Summarize the barrier height from a barrier object

Description

Summarize the barrier height from a barrier object

Usage

S3 method for class 'barrier'
summary(object, ...)

Arguments

object A barrier object.

... Not in use.

Value

A vector (for a single barrier calculation result) or a data.frame (for batch barrier calculation
results) that contains the barrier heights on the landscape.

Index

add_arg_ele (arg_set-class), 2
arg_set-class, 2
as_hash_big_matrix

(hash_big_matrix-class), 9
attach_all_matrices, 4
attach_hash_big_matrix

(hash_big_matrix-class), 9
autolayer.barrier, 4

batch_simulation, 5
batch_simulation(), 3, 21, 23
bigmemory::as.big.matrix(), 4, 9

calculate_barrier, 6
calculate_barrier(), 18, 19
check_conv, 8
coda::cumuplot(), 8

get_dist, 9
ggplot2::ggsave(), 20

hash_big_matrix
(hash_big_matrix-class), 9

hash_big_matrix-class, 9
htmlwidgets::saveWidget(), 20

ks::kde(), 11–14, 16, 17

make_2d_matrix, 10
make_2d_single (make_2d_static), 11
make_2d_static, 11
make_3d_animation, 12
make_3d_matrix, 14
make_3d_matrix(), 13
make_3d_single (make_3d_static), 15
make_3d_static, 15
make_4d_single (make_4d_static), 16
make_4d_static, 16
make_arg_grid (arg_set-class), 2
make_arg_grid(), 5
make_barrier_grid_2d, 18

make_barrier_grid_3d, 19
MASS::kde2d(), 11–14, 16, 17

narg (arg_set-class), 2
nele (arg_set-class), 2
new_arg_set (arg_set-class), 2

plot.landscape, 19
print.arg_grid (arg_set-class), 2
print.arg_set (arg_set-class), 2
print.batch_simulation

(batch_simulation), 5
print.check_conv (check_conv), 8

save_landscape, 20
sim_fun_grad, 21
sim_fun_grad(), 23
sim_fun_nongrad, 22
sim_fun_nongrad(), 21, 23
sim_fun_test, 23
sim_fun_test(), 5
summary.barrier, 24

25

	arg_set-class
	attach_all_matrices
	autolayer.barrier
	batch_simulation
	calculate_barrier
	check_conv
	get_dist
	hash_big_matrix-class
	make_2d_matrix
	make_2d_static
	make_3d_animation
	make_3d_matrix
	make_3d_static
	make_4d_static
	make_barrier_grid_2d
	make_barrier_grid_3d
	plot.landscape
	save_landscape
	sim_fun_grad
	sim_fun_nongrad
	sim_fun_test
	summary.barrier
	Index

